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AI_STRACT

Measurements ,)f d_,narnic friction force_ at the gea_ tooth con-

tact were tmdertalcen usinl_ suain gages _t the root fillets of two

_:uecessi_,e teeth, kesults arc presented from two £ear set,, ovet a

range of _[eeds and loads. The results demon_tyale that the I'ric_lon

eoefficicnl dot'_s n,_! appear In be ,_ignificanfl_, influenced by the

sliding reversal at d_e pitch point, and that the friction coefficient

value< found _.re in accord with those in general ur;e. The fi-ict_on

coefficient wa.,. found to incrca_;e at low sliding _,peeds. '13fis agn.'e,;

widt the results of disc machine loS.ring.

INTRODUCTION

Friction between sliding surface _ at the gear tooth contac_ k u_u-

ally the. major .';ounce of power loss m gear a'ans missiom;. The coef-

licicnt of faction i_ important tor predi,:ting _coring resistance and

_uffac_ durability of gears, and it is a critical pa.ramctcr in the
design of traction drivc_.

The type of contact which e>:isL_ in Iong-wearin 8 gea; systems is

teacmed elastohydrodynami," lul',ricatio:_, where a thin film of lubri-

cant sops.rates e!asl.ically defomaed solids, and there is minimal sur-

face a,;perity c(mt_et. The existence ef this film is possible because

of the ver'v larl;,e increase in vis,=osi_.y with pressure of the luhrieant.

In the heavily loaded luhrEated elasr.ohydrodynam]c contacts of

gear It:cth the lubricant ca;_ undergo a rap_d ri:,e of pressuKe from

almoSl:_erie to o,,er one Gigs Pascal (200 000 psi) in tr, little a_

(1.I millisecond. At the ramc time the fluid underlines she;wing wh:ch

leads to heat geneeatiun. Tem[_erdlurcs can reach ,_everal hundred

degree_ (.:ekius. In addition, d_re are rapkl variations in sliding

velocity and I_ad ns teeth pax,. along the line of contact. The very

complex rheological behaviour of the. fluid in tl'te_ extreme condi-

tJcms f,reclude_, the u*.e of steady-,unte (r,tati,:) measurements for the

evaluation of fh:id properties. Ne,u'ly all of the studies of this con.

t_ct phenomenon hove been ba';ed on disc nmchine_., where most of

the cotaditi,3n_ exisling;a the tooth conta,:t, other _han the rapid V=,Lna-

tmn of ,_h,:ling speed trod load, ca_ be simulaled by rolhng discs

against each other wi,h a speqd mi_.match to simtfiatc gc,qr _oth

._hdm B and. rolling.

Comprehensive accounts of carlicr experimental studie_; in

elastohych'odynamic lubrication me given by l)owson (1967} and

Dou.'_,.)n a_d Fliggin_on (1 _.166). Crook I' 1961 ) theoretically analysed

the friction and temperatures in the oil film, nnd derived the friction

ver_,u_. '_liding speed characteristic curve (}:ig. 1 ). This c'ur.,c shov, s

the dcpentk.nee of friction on sliding velocity. Tbk analysis assumed

that the oil film txh_.ves as a Newtonian fluid with a viscosity

dependent only on prc._xure ar, d temt',c rature. He assurned the vis-

cosity variation with both temlxrature and pres sure- to ix: e:,.l'_nen-

tinl with constant cxf_-_nent co¢fltcients.

Tb,: te_ ts of Ctouk ( 1061 } _ e re can'ied out at eel _pa rative l_, low

contact pressures {lens than 0.59 GPa. 85 000 lbVm2). It soon

became apparent (Johnson and Cameron, 196'7) that at high

pressures and low ',pet d_, tile ns_,nmpti_m _ff an t'..xponential increas e

in viscos:ty predicted irnpossibl) high traction._. John,.on anti

Cameron (19671 identified two cndcal features -- a large reduction

in lhe ran: of inmea,,t: of vist:o_,ity with pre_';ure above 0.7 GPa

{ 100 000 Ibf/in._), and a ceiling to the tracdun coefficient larvel _,

indcpt:ndt nt of contact pressure, rolling _peed and disc tempera

lure. Thcy advanced a hypothcsis of plastic ,linear when a critical

_Ue._,; wa._ reached. Townsend (1968).,;ummansed similar thadings

by other researchers, rnd s,tated that wither ' ach reductiorts in the

vi _cosity coefficient, :. _at the ]ubricanl _ould becor_e s|ronger than

the bearing mater|al.

Tevaarwerk (1985a) describes the development of a eon,altutiv;.

lubricant friction model for tracuon dr_ves that incorporates a vis-

coelastic and plast ic-li'kc di._,_ipalive elc meat. F_,r condllion,_ of bi_h

slide roll ratios such a_ gear contacts this model was simplified by

the omission of the ela,;tie re_prmsc of the fluid £l'e_,'a.arwerk, 1985b).

Data from rig to*is Wel'e used to delerrnine the lubricant parameter

The experimcntal |t|ensuremcn| of friction hn_ usuall} utili_;ed

disc maehine_, or in some instance_, ball-te.',ting. There have been

several attempts to me;tsure the friction coefficient thron_zh the mesh
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Figu_) 1 .--Plot of sliding speed versus traction force,

(Ca>ok, 1961).

ApPlie_ Frictional / " _'_ p,,,_/_7torque --. /- \ ._

Slrai,_ gaged bolt--. "_'1'_

Figure Z--Test rig for dynar.'_ic fdct_on ¢orce measurement,

(Benedic! and I(elk_, 1 g61).

cycle, Beuedtct and K_II,'. ¢1961) attempted to mea._ure instanta-

neous gear tooth friction using a test rig in which one of the sup-

porls wa_ str,ain-gagcd (Ftg. 2). hut they encountered d)'namic

problt:ms due to inertia and a low natural frequency of the assc_:-

bly. As a result, they reverted to the use of a disc machine [or fric-

tkm _lmasurenaent. Radzin_.ovsl_y (1972) eonso'ucted a closed-lonp

gear It:st machine to measure the instantaneous coefficient of fric-

tion through reAordin}, the instantaneou_ torque required to rotate

the gear set. ]-]oweve:. the ri_ v.'a_ operated at very .,;low _pe_s

(6 rpm) to minimise d_aamic effects due to system inertia. As a

consequence, the cont_tct conditions were nnt thoqe where a hy(ko-

dynamic ,.ill flint eonld be deve]oped, and therefore not applic._b]e

to elaslohydrodynamk: lubrication.
A numher of mca_uremenL_ of over&ll losses due to f-Jction have

been carried out. for example Anderson and Loewenthal 0979).

Kxant2. and ]landschuh (1990) but these h:chniques cannot detect

the %ariation ir_ frictiott during the Iooth engagement cycle.

An earlier .,series of tests by the authors (Rebbechi, et al.. 1991.

O_,wald, et el., 1991) utilised in-silu ealibrntion of an instn_mcntcd

gear to separate the normal and fri¢:tional effects. These te.,.t_ were

succe:;sful in providiny for accurate resolution of ncrn_nul Ioad_, but

quantitati_,e a._,sessment of friction Ioad_ was not possible, as the

calibr,dn._: friction fOlee wax just the limiting vahte of static fric-

tion attained as the gear pair v.ere slowly rotated u_dcr load.

The mm of this retvort is to describe the dc._isn principles and

operation era calibration rig, Io e'_'aluate the dynamic nonnaJ and

friction force_ at tooth contact, and to present result5 from te sting in

the NASA gea_ noise rig. Tl_e data presented here include a com-

parison of measured frictit,n vMues with theorelical predictions for

a range of speeds and Ioad_. The data used in thi,_ t:,apcr were flora

the same, cries of tesu, as Oswald, el al., ( 199(0.

APPARATUS

l)ynamic t(.sting was c;wned out in the NASA Eear noise ri_ as

described in Or,weld, et el., (1996) The ri_ includes a simple gear-

box powered by a 150kW (200hp) variable speed ¢.lccttic

motor, w_th _n eddy cu]renr, d)nanmmeter to provide po,,ver

ab_oq_tinn on the emtput. "le_t speeds ranged from 800 to 6(EX}q_m.

The te,st _,,ears were identical 28-tot, th AGMA Class 15 gears

(Table 1). Te_t.s ou two gear sets are described he;-e, one .,.el with

fairly heavy plofile modification (de'qgnalcd _.et D) and d'te other

set unmodified (withom tip relief, set A). The pt'ofih:s for these gear

sets are given hy Oswald and Town_nd (1995.1.

Table 1.--Te=t Gear tiled Lubricant IParemeters

Gear tooth ......................................................... Slandard full depth
Module. mn_ (d,amotral p,tch) .......................................... 3.175 (8)
Number:._ o¢ teeth ................................................................ _8 and 2.8

Face wldttL mm (rn.) ................................................. 6.35 (0.25)
Pres;suro angle, dog ................................................................ 20
Pitch c,rcle tfiameter, mrn (irt) ............................................. 08.9 (3.5)
Conlact mlio (heroine!) ................................................. t 6,4

100 0ercent torque, Nm (m.tbf) ............................................ 71.7 (635)
Acctjraey .......................................................................... AGMA t 5
Lubricant .......................................................... MIL-L-23699B
Vise.os,tV. CP at 70 'C ............................................................ 8.7
Pre,_uro coelflclent vigcoa,ty, Gpa" (,n. MOO el 54 'C ,., t 4.2 (O.0000g8)
Tempetntur(_ coefficient vt_eostb/. °C '(=F") ................. 0.029 (0.018)

"r,o.___._e2co__2_duot,v,__wt_EL(.._vj_-_t.:._.t ................. o.,,t (o.o2ZS._L_



The lubricant u_ed for the tests was _ynthetic turbine engine oil

(MTL-'L-2369°tg) which at the vnean temperature used in these tests

oi"70 deg Cel.qu_. bias an ah_oluae viscosity of 8.7 cE

_ t¢!1_.¢mlJ_ttt!9_tt__ia
A calibration ri_ was devised to enable indelxndent application

of the normal ;trld tangenti_d tooth forct_s (Figs. 3 and 4). I n this rig

or,':, gear shaft, equipped with the in_tname_ted teSl geaJ-, is free to

rotate only. The other shaft., which contain', a single-tooth loading

gear. is free to both rotate and slide:. The sliding motion, which is

accommodatcd by ||near re circulati ng hall _aeazings, is con strained

so as to be perpendicular to the line of action -in ofl_er word_, in

the direction of friction. The, arrangement is such that a normal force

bet_,o:n the tecdl can be applied without a friction fort.x: being

pre_nt. Conversely, provided that there is sufficient n(wrnal force

between the tee:th to prevent thevn frtml _lidmg relati,,e to one another.

a tractive farce (_imul;ltin_ friction) can Ix" applied tangent to the

tooth cont,:tct interface, independently of the nnrmal fnr'.e.

In _5.lf_tI_E_t at i.o0

Strain l_ges wc:re i_tstalled on ;.he r_ot fillets of two succes_ivc

teeth os the outpiJt gears, on both the tensile and eompressi_,e

sidc_. The gage po:;itton was chosen to 13e at the 30 degree tangcncy

position (Fig.. 5). For static calibration _:beatstone bridBe

circuits were used, and for dynaraic measurements the gages were

connected thr_mgb a slip-ring assembl) to cnnstant current signal

conditioners.

_ALANCE PULLEY- - '_IHGLE TOOTH" . --TEST GEAR

_tGHT- LO_DtN(}OEm

r_ -Z-_ z-_ . ' I_'_.'" " :,
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'! -'-... _ xXx_ LINEAR BEARING

'fRICTION' L..-. " ..._?:-- "_ t T(Y_IOLJE ARM
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Flgurt,, 3.--Static calibration rig.
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Figure 4.--Calibr.alion rig IoaBing schematic.
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30 ° tangency . ,_ / ,'
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,,,,," Gage \ ,,,,
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Retaiior, k "'.
-r-

Figure 5.---Straln gage installation on test gear.

Data acqulsitton was achieved using a 12 bit data acqui._ition

card installed in a personal computer Sample rate_ ranged fron_

6.6 h) 5() kH,' for each of the fivl; channek, being the four gage_

plus a once-per-revolution encoder sil_nal _ P.ich provided an nvtgu-

I_tr l_)silion reference The,,;e xamph: rate', pros ided for approximately

500 samples per revolution for each cttannel

"rEST PROCrOURE

Glillb tatloj)

"['lie lest gear _,t_asealibrattd _o a_,_[o enable subsequent evalua

tion of the dyilat_ic hernial and friction forces ,11tooth contact. "l"hi_

is possibk: b_:callSe of the linear independer, ce at" the str;un gage

r.:spr, me to normal and t_mSential contact forces. Calibration wa_

carried out using a silq,ile-llmth binding scar. !,o that load could be

applied river the full tanl_e of the tooth engagemem cycle, while



avoidingindeterminatt:lordsl_arin8froman i_dlacent tooth The

torque loadint_ wa_ applied in four increments; O, 57, 85 and

113 percent of 71.7 Nm torque. This procedure was carried out at

roll angle iucremcuts of 2 degrees from 10 to 32 degrees. One extra

reading wits taken at 21 degr_s becau:;e this i,'. approximately the

pitch point of the gears. Once this "fl'iclionlc:_s'" calibration was

complete, the proce..dttre was repeated using a constant torque toad-

in_ to prevent :;tip, and 2 traction (friction) loads of 100 and 19(1N

(22.3 and 42.4 Ihf).

The. data were _asea to gent_ate a tooth force influence coeffi-

cient matrix as descrilx'.d ill the following sectno_. This procedure is

similar to that d,zgcribed by Rebbechi, et al l_)l. but a significant

improvement i, now possible tn that tlx_ c;tlib_ation riJ__described

here enables qH_ntitative a_;gessment of fricdon force in addition to

nomml force.

An inverse ebec'k of the calibration procedure wag theu cnrried

out by engaging a conventional ge_s with the test gt:ar. :;o that load

sharing bet_'een adjacent _eth was_ present.

Dynamic _t:rains were :recorded fo[ the set A and t;ct D gcam

over 9 torque levels and four SlX'---_s (800. 2J}00, 4000. 6000 rpm).

After .'tcquJsition, the data ,,,'era digitally resampled using linear

interpellation. ;It I[Y.30 samples per revolution, and then synchro-

nously averag¢_] t¢_ minimise _on-synchronou._ components. The

r¢_.ample rate is greater tJlan the acqui,fition rate to prevent the

introduction of" additional aliasing errors. The synchronously aver-

ag,*d sta'am data we:re used to e,omputc dyn:mfic tooth fnreea.

The din:ct aneasurement of tractive and normal fierce using these

strain I_ages is eXlX'ct, d to avoid fix(: dynamic el_ects such as furred

by Benedict and Kelley (19611. Thu limiting factor here will bc the

natural frequency of the tooth ilself in bending. A ,_imple calcula-

tion shows this to be in cxcess of 10 kHz. w,fll a.bove th,- moth

engagcment frequt:ney of 2,800 llertz at the maximum test speed,

6000 rpm. Another po_sib_.e @nan_ic cftect is the interesting fea-

ture remarked on by Jo_an,,on artd Cameron. (1967) _md Te'_aarwerk

(1985b) where th," elastic complia.nce at the tooth tin,tact in the

direction of the _aetive force, ,:an *esult m tangential elastic com-

plianc(: of similar ord_._r to that of the film itself. While this will

modify the apparent lubricant viscosity, it is not expected tt_ affect

the measttrememt of frictio_ furce.

A_ALV'rICAL PROCEIDURE

Th,: analytical procedure is an extensiots, of the procedure

described in R_:bbechi. et at., 1¢191. Measuring the _:rain outputs Sc

mad S t of the gage_; mounmd on the compressive and tensP_ sides

re_,pectively enables resolulion of thu normal (F n) and tractive (l-f)

tooth forces (Fig. z.). provided that the 8age re_ponses are linearb

independent. Usinl_ as an ¢xarc..ple tlx: _,ituation v,.her¢ one loath is

loaded, the resl_n_ of the romprc_,_.ivc and tensile gages S. and S t
can be written as:

S c = altUn + al2V f (1)

S t = a21t, n + a22F t (2)

or allcrnattvely as:

{s}=hi{v}

_hcrt"

and

fS_ I

{V}::

the aij are then the influence coefficients. Fttr example, all i_ the

compressive strain due to a unit norn_al force Fn and a12 is the com-

pressive strain due to a unit friction force Ff.

The strain influence coefficients are then evaluated by setting Fxx

and Ff in equnuons 1 and 2 alternately to zero. This i¢ achieved in

the calibration rig (Figs. 3 and 4) by either applying a torque in the

al'sence of a _ractive load (Ff = 0, Fi, .. 4), or by applying a constant

torque, suffioent to prevent slip, antI then a tracttve load. In the

latter case. it is assumed that the strain res_msc of the tooth to d'.e

applied load,'- is linear, and the torque reeult_ in a constant offset.

The strains doe If this offset me subtracted fiom the incremental

strains due to the tractive loading.

in the calibration rig the single-tooth gear was engaged with each

imtrumented tooth on the test gear, mid strains; from all four gages

recorded. In this way the coefficients of a 4×4 mamx of coefficient,,

can be constructed_ By numerically simulating an additiouM instru-

mentt:d tooth (Rehbechi, etal., 1991 ) the matrix become,, 6_.6. The

incluston of effects from the raljaeent tooth is an essential Frerequi-

silo of evaluating tooth loads where there is load- sharing. This i_,

n,.-cessary because of the stress ficld in a gt:ar, which is such that an

applied load on one tot_th ,,_ill tesuh in -_trains not only c,n that tooth.

but alto adjacent teeth. This effect will be more marked in the case

r}f thin-rim gears.

Figure 6 shows the re_ult_ lot calibration at I 1A percent torque

with and w tthout frictio_ Six-degree polynomial_ of the strain

influence coo f-ticients were cm_puted to allow intezTmlatiort for any

roll m_gle. Evaluation of the c(.,effxcients g_ves valid data arty v.here

whorl: there i,. contact of tooth 1 or tooth 2 (Fig. 5). Fn and FI ale

calcuiated by pro-multiplying by [a[ "t ,o that

: [n]-t{S} (6)

Ea,]ie_ work established that there are three distinct reg_o_s in

the tractive force versus shp curve (Fig. I) for heavily loaded

el a_tohydrodynarrdc contacts. _ee far example l'owt_send (1968) and

Tevaarwerk (1985a):

Rcgton (At - The line,_ low slip regicm. Thi.,, i_ thought to be

Jsotht mml in nature, caused by the _hearinlz ofa hnear vxscuu, fluid

(long transit time) or a Imear elashc fluid, where the tramil time of

the oil t$ equal to or less than dxe relaxation time of the oil.

Region (B) -The non-lineal region, still isothermM in nature hut

when: the viscous element resptmds non-hnearly. The expertmen-

tally nottced reduction in friclion ix greater than can be actounted

for b) the temperature ri_e alone. Non-linear and shear rule ell eel,,

ale thought to he _mportant.
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Figure 6.--_Single-toot h strain calibration at 113 pen:ant

torque, with and without friction load of 23.1 N.

Rat.ion (C) - Thermal regiort. At high values of slip the traction

de,creases with increasing slip due to tht: he_t ge net'ation at the high

values of shcaring, and the associated reduction in x'iscosity due to

tctnperature ri_e in the film.

Theoretical calt'ulations of frictinn f.:orct: were made according

t, the pr, cedo,re_ of (;rook (1961). For these computations, the

parameters as listed in Table 1 were tahen {or the gear.,, and lubri-

cant, •_,ith %OliB__ modificaticm to Bccount for the ;:emperature depen

dunce of the viscrlqit2:" coefficient, as evident from the prc_,slarc

(Errlichello. 1.q90). Crook's method as.surrlcd u constant pre,_ure
¢oeffit'ient to evaluate the heat halauce in the oil ftln= and the resltll-

inLz ter.iperature ris:_ Friction force is eualu.atcd b 3, inlcgraling over

the IIertzian c(mtact region.

The Hertzian contact width mad contact ptc msurc were cah:ulawd

according to B.isson and Anderaon (196aL for a line contact. "l'he

16 ids assumed for the computation were the dynamic tooth load,; a,,

mu'a_ured' flu.ring test. The theoretical friction coefficient was then

cn nlput'_+d according to the method of (;rook ( 1961 ).

RESULTS AND DI:SCUSSION

_mj.r+.mee,.bJJo..._
The accurate' of the gear load calibratiun I_+cedure wa,; tc_ted

by repeatittg the calibration procedure, hut instead of meshing with

the qingle-tooth _ear, try te st gear was masked with its n actual mat-

in._ gear. l'his test pro',idcs fin" an inverse check of the calibration

coefficients, aud a te.,;t of the _,'alidity of the computalions in _e

load- sharing mesh region.

Thr results of thi_ _tatic tc_t procedure are shown ia Figs.. 7 and

8 for gear :_ets A ,'rod D. For these u:st; a normal force ,a,as applied,

_x'ith no external friction force. The dat had line shoo, g tile expected

nt.,rmal force i,_ the single contact n;glon. The resulting :;urn total of

the normal force outside of thir, region should lldd Io thi_ exl',ccted

value. The load distrihutiol_nn each tooth is influenced by the tooth

profik.,_ The faction force on erich tooth should be zero where there

is tlingle-looth contact In the ttlultiple .ton,:h contact regina, inter.

hal forces can develop, to the limit of static friction, due it gear

mottoll, alr.houlh rio ¢_.tem'_ I,qogentlst for;re i_ prcsCltl. Ihe effect

Z

_co I Total normal force.,

I I_itch Pt. _dch I:_. ,"

20_0 lOOfl'_ i tOoth 2 /

...... ..... ,: al....

-//\ i '
I

02 30 2a 26 24 22 20 I_j 1_ 14 12 10

P.o_ _gtn, deg

Figure 7'.--Static strain te_t of ge_lr sot A at torque 1 '14%.

7,

;_o0 "fot;al normal force -- ,
PitCh PI, Plif.k Pi, . : ]

I_._lb I tooti, 2 "

....... .7":==7_.... < " -/---T--_ .... I
z I' / , \ I

t, ,,I t \/ \, ' 1I / l \t

into / ' /\ l ",

500 / ' / X. It _'\ I' 100
z , 1/-'7 , \i

, ,--" , ,,,__/t

Figure 8.---Stall(" stiain test of gear sel O at torque 114%.

of intomat forces can be seen rtcar the car, tar of Fig. 8. where Ihc

friction fotce_ have rt'ached approximately +/- 60 S, mth< pres-

ence of normal forces of about 900 N. "Flus indicate,; a ftict,o=. -ocf-

ficient of 0.067. a Yea_,*_nable I_gurt_ for static friction in case_ where

the ge.tar_ have lubricant applied to minimxse damage during

eahbrabon.

Tbe significant featurc_ of the_e re:,uh_ are _¢veral. Fir:,tly. the

te*l showq an excellem accuracy for the nomtal force, where Ihc

aI_lie d nominal force (torque/base radiu'0 agree.,, within 3 percent.

The rt;giom,_ of single-loath contact where the nomad force is con-

stant are _:isibl¢, and in the load sharing region:, the sum of the nor-

mal h,ree.,, on each tooth equates closely to the constant Iota} applied

force. The marked difference between Fil.z_,. "7 and 8 is due to the

unmodified profile of ge,r ,_1 A, vcrxu._ tile lip-modified treats of

._ct I) The frtct,on force in mo._t in:itancesis zero in the single tooth

contact region. "]+he static vaJldation provides confidence in the

v:.liability of Ihc calibration procedure.

Dynamic straiu da;a from the |our _tra_n gages were processed

_v the pr¢,cedure deqcribed above to c_dculate the dynamic nor,n,ql

and frictional forces acting bcl_cen the meshing gear teeth. A sample

i_ ,_ho,_n in Fig. 0 for I/tar _et I) at 800 rpm and 141 Ixreent torque

The Seat tooth friction force and frittion t'ocfficient suc plotted m
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F:g. lO for neat set D al twenty different test tendinous flour speeds

and five torques). Although nine torque lew.'Is were recorded, only

five art: plotted, to reduce clutter in the plots. A s_unple of similar

data from Fear set A (no tip relief) is shown in Fig. _ I. The friction

data shown in Figs. 10 and 11 is bruited to within the si_le tooth

pair contact region. TI_ data from outside thi._ region were not con-

tmuou:i and therelore not valid.

Accqaracy of the strain data is likely Io be comproraL',ed by _ev-

e_] fartors, chiefly the low tooth load.,, rcsultmg in small ._trains.

As wa.,. discussed by Re, bbc_chi, et al., (i 991 ), the friction measure-

me nt relics Ul_ n the difference between the ma_xatudc of co repres-

sive and tensih: tooth strains, and is particularly sensitive tr_ errt_r

when the values are similar in value. The proees,; ot averagin E ts

exl:ected to help. but cannot eliminnte errors arising from synchro

no,a_ effects, h is .also likely that the mea._ured qtrain,; are mf_a

enccd by other load_ such as gear blank vibratiort modes fin D ,',ed

on the gear. Finally, these errors _ue amplified by the matrix in,'er-

sion pr oce.,,s.

The measured d ynarmc tooth friction force._ are expected to be

most accurate in the _ingle-tooth contact r(;gion, where the force_,

ate derwed flora the output ofjusl two i_agc • - tcn_ile and compres-

sive on one toolh. The _,et D gears with theiJ" heavy lip relief have a

longer _ingle contact zone, hence aJe better suited fi_r this qtudy. In

Figs. 10 and 11, the friction force h'L_ helen adju,,ted vertically to lie

centrally mound the x.axis. Thl_ adiustrnent wa_, made because ol'a

retail residual OL'-offeet in the recorded Io.th strum values.

From the friction data. the frictmn cnefl_cie=_t ctm b_. ev;duated

by dividing the friction force by the normal tooth load. The result-

inn frictio, coefficient is plotted in Figs. 10 and 11 fat the higher

torque_. Th; fi'iction force {and thus it,, algehraie zig'a) reverses

ditecuon at th_ pitch point. Althoug/_ the friction coefficient is alu,'ays

positive Fig_. 10 and 12 show it crossing the hori/tmtal as0, as the

faction force zevetse_ d_reetin:-L Whikt the data ltuck the smooth

appearance we ,nay expecl after viewing data froth di_,c machine

tests (for example Johnson and Cameron. 1967), a number, of sig-

nificant observations can he made:

(a) There appeaa" to be no discontinnilies in Ihe faction force due

to s,_ag direction reversal at the pitd_-point.

(b) The coefficient of friction appears to decrease slighdy with

increasing speed, b_t is htrgely insensitive to load. in the torque

valuer; of 78 to ! 41 percent plotted here.

(c) The maximum friction coefficient _ approximately 0.063, at

800 rpm.

(d) The friction coefficient at the highest _pea;d of 6{_0 _pm

appears to be a maximum of 0.04.

(e) The ffictio_t values for gear ,_et A (no relief) a_e similar to

those for 8ear set D (intermediate relief).

Overall, the friction measurements sho_, that the features

obser,,ed in disc tests of highly Io,'_ed lubricated contact.', are realised

throttk.,hot_ the gent tooth meshiny cycle. Although the e_,nluation

of friction at very light loads was not reliahlc, the trend shows that

for loads in the normal operating range of the.c.e gears thal friction

coefficient is largcly indcpcndt:nt of load. Finally. fi'om obs¢_'rvation

(bl above, the friction coefficient increase_ at low sliding speeds.

"tiffs i,_ in accord waLh disk machine test_ as rcportcd in the Tfterences.

The theoretical friction coefficient calculated accordin_ to Crook

{19611 is plotted in Fi_. 12, for gear set 11, 6000 rpm. The tooth

urn'real load_ n_ed in this computation _ere those exgcrin_entally

rect_rded at the nominal torquc_ levels of 47 to 141 percent. [_rnm

these plot_ it is evident that in companion with the measured data,

the theoretical calculation gro:,sly overestimates the friction at low

specd_ of sliding. At h_gher sliding speeds (away from dtc pitch

point) the theoretical friction eneffici_'nt merges for the ".hffere;d

loads, and numerically the rcsults for theoretic al calcu]afi:,n alTec

more closely with the measured values.

At higher sliding speeds temperature efl:e,;t._ hecome more

intportant, and Ihe high vi:_cosity due to _¢:,_ure a_on¢ is modified

by the resulting high ter,.pera_'_es. The computed maximum tem-

pcratuxe riseof the lubricant, re_ched at the midpoint ol" the film. is

also plotted in Fig. 12. ltcan be sec, that the temperature ri_ reaches

a peak _alue of 140 _C. Due to the reduced tooth load (frurn

Ioad-_haring) at the larger roll angles, thi_ peak is reached before

the exlsemes t_f tliding. At 141 percent torque', the computed val-

ues of maximum llertzian pressure v, ere 1.41 Gpa 1'20_ 600 Ibft

in'), the htbrit:ant thickness t).49 microns (17.. ¢; micro-inches), and

the Hertzian half-width 0.19 mm (0.0074 inches). Computat*ons

of theoretical frictton at lower sp.:eds reaulted in unreahsttcMly high

friction vaiue_, confirming fnrlher doe limitations., of a simple m_d¢l

for the lubricant.

As a further comparison, the fr_cti_,n coefficient was calculated

according to Benedict and Kelley (19611. Their computation is

intended ffimatily tar u._e in ._corinl_ hulure prediction:e, and effec-

lively relates to the region C of F_g. I. _hnt is the thermal region.

Results using their etlt_ati_,n are platted in Pig. 13. The loads used

are tho_e ex[x'rimentally obtmned. These teSUllS agret: fmrly t_cll

with experimental dat,t tTig. I0) in the re#inn away from the pitch-

point where the frtctton coefficient is approximately 0.04.
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SUMMARY AND CONCLUSIONS

Gear t_oth normal and frictional force_ were mca_ulcd using

straiagages mounted inthe filletsof the gear t,'eth,The mcasttred

forces were osc_ 111computc the dyn,',anic coefficient of fricl_ion

e_;isting ht:twccn contacting t.eeth. The following conclusions were

obtained:

1. The rrieasm-ed dynamic friction loads show friction coefficients

of approximately i_f 0.0J. to 0.06. F'riction coel_chents increase at

Iov.- slidin_ speeds. The:;e results are in accord whh di_,k machine

te.'a_ as re[xorted in the re.Cercnccs

2. The result', show thqt the reversal of sliding _,,hk:h occurs at the

pi_ch-l_int doe* not cause a discontinuity in the fricllon coefficient.

which shows a smooth transition as the fri,:.tion force reverse_ direction.

3. The technique _'le_cribed here offer,; the potential to study the

variation in friction cocffic-ient lhrl_ugh_mt the 8cat tooth meshing

c3cle, and example.,; of this variation lot a range of load_ and speeds

ar_ prt:scntcd.

4. The measured data arc more eccuratc at higher load:, and in the

singlc-toor.h contact re,ton.
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